Efficient and Straggler-Resistant Homomorphic Encryption for Heterogeneous Federated Learning

Nan Yan¹, Yuqing Li¹, Jing Chen¹, Xiong Wang², Jianan Hong³, Kun He¹, and Wei Wang⁴

¹Wuhan University

²Huazhong University of Science and Technology

³Shanghai Jiao Tong University

⁴The Hong Kong University of Science and Technology

Federated Learning (FL)

Privacy Concerns:

- GDPR
- CCPA

Solution: Federated Learning [1]

Collaborative training without sharing private data

Leakage of parameters or gradients (eg.DLG [2])

 Yang Q, Liu Y, Chen T, et al. Federated machine learning: Concept and applications[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2019, 10(2): 1-19.
 Zhu L, Liu Z, Han S. Deep leakage from gradients[J]. Advances in neural information processing systems, 2019, 32

(Packed) Homomorphic Encryption (PHE)

Homomorphic Encryption (HE):

- Encrypt model updates [3]
- Operate directly on ciphertext
- **PHE**: Packing multiple plaintexts into a single ciphertext [4]

- Why is HE expensive:
 - Computation
 - Communication

Plaintext size	(Packed) HE scheme	Ciphertext size	Encryption time (s)	Decryption time (s)	
	Paillier	21.97 MB	63.46	39.63	
	PackedPaillier	264.96 KB 3.18		2.60	
109 89KB	BFV		Memory out		
109.09KD	PackedBFV	22.68 MB	0.04	0.02	
-	CKKS		Memory out		
	PackedCKKS	4.54 MB	0.06	0.04	

[3] Aono Y, Hayashi T, Wang L, et al. Privacy-preserving deep learning via additively homomorphic encryption[J]. IEEE transactions on information forensics and security, 2017, 13(5): 1333-1345.

[4] Zhang C, Li S, Xia J, et al. {BatchCrypt}: Efficient homomorphic encryption for {Cross-Silo} federated learning[C]//2020 USENIX annual technical conference (USENIX ATC 20). 2020: 493-506.

Limitations of Packed Homomorphic Encryption (PHE)

S Causes and Challenges

- Why high costs

Time (s) Clients	Training	Encryption	Idle	Decryption
Normal clients	3.24	6.68	8.25	4.65
Stragglers	6.19	12.24	2.00	9.69

- Statistical Heterogeneity
 - Difference in local models
 - Bias (Non-IID)

Slow Convergence

- System Heterogeneity
 - Computational Capabilities
 - Communication Bandwidth

Straggler

[5] B. Luo, W. Xiao, S. Wang, J. Huang, and L. Tassiulas, "Tackling system and statistical heterogeneity for federated learning with adaptive client sampling," in Proc. IEEE INFOCOM, 2022, pp. 1739–1748.

Potential Solutions and Challenges

S Causes and Challenges

- What to do with *weighted aggregation*

Weighted Aggregation [6]

- Average aggregation exacerbates bias
- Private data volume \neq Contribution
- Client-side misreporting of weights

Server-side weighted is needed

Challenge 1: contribution-based weighted aggregation in ciphertext

[6] Y. Deng, F. Lyu, J. Ren, Y.-C. Chen, P. Yang, Y. Zhou, and Y. Zhang, "Improving federated learning with quality-aware user incentive and auto-weighted model aggregation," IEEE TPDS, vol. 33, no. 12, pp. 4515–4529, 2022.

Potential Solutions and Challenges

S Causes and Challenges

- What to do with *client selection*

Client Selection [7]

- Different importance of clients
- Selection depends on model updates

in plaintext

Privacy protection is more challenging

Challenge 2: efficient and secure client selection

[7] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, "Oort: Efficient federated learning via guided participant selection," in Proc. USENIX OSDI, 2021, pp. 19–35.

System Overview: Preliminary Knowledge

So Locality-Sensitive Hashing (LSH)

- Why is LSH [8]
 - Approximate nearest neighbor search
 - Similarity is maintained
 - Condensed representation

If
$$d(w_p, w_q) < R$$
, then $\Pr_{\mathcal{H}}(h(w_p) = h(w_q)) \ge p_1$;
If $d(w_p, w_q) \ge cR$, then $\Pr_{\mathcal{H}}(h(w_p) = h(w_q)) \le p_2$;

System Overview: FedPHE Architecture

- 1. Clients produce gradients
- 2. Encrypt gradients and upload to Server
- 3. Server performs weighted aggregation on ciphertext

- 4. Clients receive aggregated ciphertext and update
- 5. Clients compute the sketch of local model
- 6. Server performs client selection

System Overview: CKKS Homomorphic Encryption

S Packed HE Scheme

- Why is CKKS

	Paillier [9]	BFV [10]	CKKS [11]
Real Vector	X	X	\checkmark
Homomorphic Multiplication	X	\checkmark	\checkmark
Not Overflow	X	X	\checkmark

[9] P. Paillier, "Public-key cryptosystems based on composite degree residuosity classes," in Proc. Eurocrypt, 1999, pp. 223–238.
[10] J. Fan and F. Vercauteren, "Somewhat practical fully homomorphic encryption," Cryptology ePrint Archive, 2012.
[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, "Homomorphic encryption for arithmetic of approximate numbers," in Proc. ASIACRYPT, 2017, pp. 409–437.

System Overview: FedPHE Architecture

So FedPHE: Contribution-aware encrypted weighted aggregation

1	Algorithm 1: FedPHE			
	Input: Clients \mathcal{N} , global round T , local steps E ,			
	learning rate η			
	Output: Global model w^T			
1	Initialize models $\{ m{w}_i \}_\mathcal{N}$ and selected clients $\mathcal{S}^0 \leftarrow$	$\mathcal{N};$		
	// Server			
2	for each round $t \in \{0, \cdots, T-1\}$ do			
3	Receive encrypted local models C_i^t and masks N	I_i^t		
	from selected clients $i \in S^t$;			
4	$C^t, M^t \leftarrow \text{Run weighted aggregation by Alg. 2}$;		
5	Dispatch C^t and M^t to all clients;			
6	Receive sketches $\{h_i^t\}_{i \in \mathcal{N}}$ of clients' local mode	els;		
7	$S^{t+1} \leftarrow$ Run client selection by Alg. 3;			
8	Send S^{t+1} to clients;			
	// Client $i \in \mathcal{N}$			
9	for each round $t \in \{0, \cdots, T-1\}$ do			
10	for $j=0,\cdots,E-1$ do			
11	$g_i(oldsymbol{w}_{i,j}^t) \leftarrow abla f_i(oldsymbol{w}_{i,j}^t);$			
12	$\left \lfloor egin{array}{c} oldsymbol{w}_{i,j+1}^t \leftarrow oldsymbol{w}_{i,j}^t - \eta g_i(oldsymbol{w}_{i,j}^t); \end{array} ight ight angle$			
13	$oldsymbol{w}_{i}^{t} \leftarrow oldsymbol{w}_{i,E}^{t};$			
14	if $i \in \mathcal{S}^t$ then	_		
15	$\begin{array}{c} \mathcal{C}_i^t, M_i^t \leftarrow \text{Run PHE and sparsification by} \\ \text{Alg. 2;} \end{array}$			
16	Send C_i^t, M_i^t to the PS;			
17	Receive encrypted global model C^t and mask Λ	$I^t;$		
18	$w_i^t \leftarrow ext{Decrypt}$ and update with global model w	<i>t</i> ;		
19	Send sketch h_i^t of w_i^t to the PS by Alg. 3;			
20	Receive the selection set S^{t+1} from the PS;			

• Server: encrypted weighted aggregation

• Server: selects clients

- Clients: packed homomorphic encrytion and sparsification
- Clients: sketch of local models

System overview: FedPHE Architecture

S FedPHE: Contribution-aware encrypted weighted aggregation

- Pack level sparsification

System overview: FedPHE Architecture

S FedPHE Contribution-aware encrypted weighted aggregation

- Encrypted weighted aggregation
 - Hash collisions probability --> Jaccard similarity

 $\Pr_{\mathcal{H}}(h_i^{t-1} = h_i^t) = JS(w_i^{t-1}, w_i^t) \quad JS(X, Y) = |X \cap Y| / |X \cup Y|$

Low similarity --> High contribution
$$p_i^t = \frac{\exp(-\beta \cdot JS(w_i^{t-1}, w_i^t))}{\sum_{j \in S^t} \exp(-\beta \cdot JS(w_j^{t-1}, w_j^t))}$$

$$\boldsymbol{E}(\boldsymbol{w}^{t+1}) = \sum_{i \in \mathcal{S}^t} \boldsymbol{E}\left(p_i^t\right) \times \boldsymbol{E}\left(\boldsymbol{w}_i^t\right) \implies \boldsymbol{E}(\boldsymbol{w}^{t+1}) = \sum_{i \in \mathcal{S}^t} \boldsymbol{E}\left(p_i^t \times \boldsymbol{w}_i^t\right)$$

Sketching-based Client Selection

S Clustering sketches

- Gap statistic [12]
 - Optimal number k of clusters
 - *Monte Carlo* simulation and intra-class variation

 $\mathbb{G}_n(k) = \mathbb{E}_n^*(\log W_k) - \log W_k \qquad \mathbb{G}_k \ge \mathbb{G}_{k+1} - s_{k+1}$

- LSH properties
 - Similar sketches mean similar models

[12] R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423, 2001

Sketching-based Client Selection

Selecting Clients

- Priority function
 - Selecting clients to train *quickly*
 - Historical engagement performance
- Compared to traditional *cosine* similarity
 - Computation and communication efficient
 - **Privacy** protection

$$\delta_i^{t-1} = \frac{1}{t} \sum_{j=0}^t T_i^j$$

S Evaluation Setup

- Dirichlet Non-IID setting ($\alpha = 1$)
- LSH setting k = 200

S Datasets and models

- MNIST, LeNet-5
- FashionMNIST, CNN
- CIFAR-10, ResNet-20

S Benchmarks

Baseline	Method			
Plaintext	No encryption (Upper bounds)			
BatchCrypt	Packed HE based on Paillier			
PackedBFV	Packed HE based on BFV			
PackedCKKS	Packed HE based on CKKS			
FedAvg	Randomly select clients			
FLANP	Adaptively add clients			

SAccuracy

- Packing encryption will not cause accuracy decrease
- FedPHE fluctuates 0.26% 1.58% due to sparsification and client selection

Performance Evaluation

So Network traffic and training time

- Training acceleration 1.85-4.44×
- Reduce communication overhead by $1.24-22.62 \times$

Dataset	Metric	Plaintext	BatchCrypt	PackedBFV	PackedCKKS	FedPHE
MNIST	Traffic (MB)	81	217	3959	2886	175
	Accuracy	95.94%	95.50%	95.10%	95.44%	95.04%
	Time (s)	342.34	1377.03	652.78	885.90	743.26
	Traffic (MB)	73	196	3300	2550	151
FashionMNIST	Accuracy	89.22%	89.42%	89.10%	89.07%	88.96%
	Time (s)	333.15	1590.23	650.68	823.88	690.65
	Traffic (MB)	523	1256	22107	17089	5165
CIFAR-10	Accuracy	72.95%	73.79%	71.02%	74.77%	71.37%
	Time (s)	1016.62	7126.14	1491.74	2419.18	1605.71

Performance Evaluation

So Network traffic and training time

- FedPHE achieved faster convergence speed than FedAvg and FLANP
- FedPHE is more effective against stragglers

Performance Evaluation

S Comparison of number of clusters

- Decreasing number indicates higher similarity between local models
- Dynamically determine the cluster number

S Mitigate Straggler

- FedAvg still has 25% stragglers
- FLANP still has 17% stragglers
- FedPHE has only 13% of stragglers
- FedPHE selects a representative subset of clients and can also optimize communications
- Mitigate the impact of stragglers 1.71-2.39×

(b) Number of Selected Clients

Conclusions

S Design Goal

- Privacy Protection
- Efficiency
- Straggler Resistance

S FedPHE Architecture

- Encrypted weighted aggregation
 - CKKS-based PHE (privacy)
 - Contribution-aware (accuracy)
 - Pack-level sparsification (efficiency)
- Sketch-based client selection
 - Sketching local models (privacy)
 - Clustering sketches (efficiency)
 - Selecting clients (straggler resistance)

Conclusions

S FedPHE Results

- Training speed is increased by $1.85-4.44 \times$
- Communication overhead is reduced by $1.24-22.62 \times$
- Model accuracy only dropped by 1.58%

Thank you for coming! FedPHE is open sourced at <u>https://github.com/lunan0320/FedPHE</u>

nanyan@whu.edu.cn

